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Abstract

In most practical problems where traditional numeric simulation is not

adequate, one need to reason about a system with both qualitative and

quantitative equations. In this paper, we address the problem of

propagating qualitative values represented as interval values through

quantitative equations. Previous research has produced exponential-time

algorithms for approximate solution of the problem. These may not meet

the stringent requirements of many real time applications. This paper

advances the state of art by producing a linear-time algorithm that can

propagate a qualitative value through a class of complex quantitative

equations exactly and through arbitrary algebraic expressions

approximately. The algorithm was found applicable to Space Shuttle

Reaction Control System model.

Content Areas: Qualitative Reasoning, Constraint Based Reasoning





1. Introduction

This paper presents results on combining traditional numeric models with

qualitative models. A variety of A1 programs use qualitative knowledge. Expert-

defined rules often reason about variables with 'low', 'medium' and 'high' values.

Qualitative reasoning techniques such as QSIM [Kuipers, 1984, 1986], and QP

theory [Forbus, 1984] infer a behavior of a device from its qualitative models

defined using qualitative variables, equalities and inequalities. A qualitative variable

can take a qualitative value, i.e., an interval separated by landmark values.

Knowledge of many physical systems like Space Shuttle subsystems takes the form

of qualitative models of some components and quantitative models of others

[Robinson, 1992]. In general, a qualitative version of a quantitative model (e.g. y

increases monotonically with x for y = 3 x + 4 ) has less information, and may not

be adequate to solve a problem at hand. For example, the equation in model

fragment M2 in figure 1 can not be converted into any meaningful qualitative

model. The model in the figure is an example of a system that has two qualitative

model fragments (M1 and M3) and one quantitative model fragment (M2). The

methods for combining quantitative knowledge with qualitative knowledge are of

fundamental importance to be able to use artificial intelligence techniques in

applications involving models like that described in figure 1.

The system whose model is shown in figure 1 could be assumed to be working if

particular values of S, T, U and O (e.g., S= very low, T = very low, U = low, and

O = high) are consistent with the model. We can reason qualitatively about M1 to

find that P = high will be consistent with O = high. Similarly, we can reason about

M3 to find that R will be low if U is low. One would still need to test if the set of

values { S= very low, T= very low, P = high, R = low} are consistent with M2.

We can check this consistency if we have an algorithm to solve the following

problem:

P1. Given a quantitative expression relating y with xl, x2 ..... Xn and interval

values 1 of xl, x2 .... Xn, what is the interval value of y within a specified

precision?

The required precision would vary from one problem to another. In our example,

we may need to know if P is low or high for checking it against the qualitative

1A variable has an interval value [a b] if it can take any value in the interval but can never take a
value outside the interval.



modelM 1. If P hasasensorassociatedwith it, the precisionneededmaybe the
leastcountof measurementsof thesensor.If thissensormeasuredPto be [1617],

we would needto know if thesetof values{ S= very low, T= very low, P = [16
17],R = low} is consistentwith M2. In general,expressionslike M2 mayhave

more than just a few variables. This paper presentsresults of the research
associatedwith theabovedescribedproblem(P1).
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O,P,R,Sarepositiverealintervalvariables.
verylow= [12],low=[28],nominal=[8 16],high=[1624]

Model Fragment M1
if Pis high,thenO ishigh.
if Pis low or nominal,thenO is nominal.

Model Fragment M2

R 2- S 2

{  /s sl} "
R 2- S

{
+ T 2

Model Fragment M3
If U is low or nominal, R is low.

If U is high, R is nominal.

Problem: Are the values S= very low, T= very low, U= low and O= high
consistent with the above model?

Figure 1" A model with qualitative and auantitative equations.

In the next section, we overview related research. Third section defines the

terminology used. Forth section presents results on computational intractability of

the general interval propagation problem. Fifth section discusses conditions under

which interval propagation can be done in linear time, and present an algorithm to



doso.Sixthsectiondiscussesutility of thisalgorithmin practicalapplications,and
thefinal sectionis theconclusion.
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2. Background

In this section, we will briefly describe important AI work on problem P1. (The

reader is referred to [Davis, 1987] for a detailed survey of use of interval labels in

constraint propagation systems.) There are two approaches to infer values of

variables from a set of equations: symbolic manipulation approach and direct

solution approach. In symbolic manipulation approach, the equations are simplified

to answer a question. For example, if y = x 3 - 3 x 2 + 3 x - 1 and x = 3, one could

simplify y to be (x - 1) 3 by manipulating the symbolic form of the equation and

then find y to be 23 = 8. MINIMA (Williams, 1988) work falls in this category. In

the direct solution approach, an algorithm is used to compute the result directly

from an equation without symbolic manipulation. Thus y = 33 - 3.32 + 3.3 - 1 = 8

using real arithmetic.

Interval algebra lacks the properties such as existence of additive and multiplicative

inverses and distributive property [Struss, 1988]. As a result, it is not possible to

have a powerful symbolic manipulation system like MACSYMA for interval

variables. Williams [1988] presents a hybrid algebra that allows both signs and

reals, but not arbitrary intervals and shows that it has strong mathematical

properties. As a result, he was able to develop a system called MINIMA that can do

symbolic manipulation on a set of equations def'med over reals and signs (+ - 0).

Given the lack of a symbolic manipulation system for arbitrary intervals, a straight-

forward algorithm often used to evaluate an arithmetic expression approximately is

to evaluate an operand at a time. This evaluation overestimates true results, e.g.,

consider y = x 3 - 3 x 2 + 3 x - 1. If x = [0, 11, what is the value of y? The set of

values of y for x e [0 1] is [-1 0], as the expression for y is an expansion of (x-

1) 3. Evaluation of one operand at a time would give y to be [0 1] + [-3 0] + [0 3]

+ [-1 -1] = [-4 3]. As another example, consider the evaluation of P in figure 1 for

the values S = [1 2], R = [2 8] and T = [1 2]. The set of values of P based on all

possible combinations of values of S, R and T is [0. 75 3.9525]. Evaluation based

on one operand at a time is [-14.75 252.0375]. Notice that the range of actual

evaluation is not significantly larger that of any of inputs, but the particular scheme

of approximate evaluation overestimates the result widely. In general, the one-

operand-at-a-time evaluation may be undefined due to division by zero or may



give intervalswith arbitrarily largewidth evenfor simplefunctionswith finite real
evaluation.
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Additional inferencerulescanreducethis largeoverestimationin somecaseswhere
one-operand-at-a-timeevaluation is used. Quantity Lattice [Simmons, 1986]

deduces comparative relationships from a set of relationships and arithmetic

expressions. For example: ifA = [2 4], B = [1 4], D = A - B, is D> A ? Here, we

have D = A - B = [-2 3] and A = [2 4]. Thus, with one-operand-at-a-time evaluation

alone, the system will estimate D to be more than A in some cases. To address the

problem of overestimation in one operand-at-a-time scheme used, Quantity Lattice

uses a relational arithmetic to infer relationships from arithmetic expressions. In the

above example, it uses an inference rule "a> 0 => X - a < X" to infer that D = A - B

will imply D < A. i. e. D is never more than A. The scheme was developed to

handle simple relational inference encountered in common-sense reasoning, and is

not meant to be used with equations encountered in science applications. (Is p high

i.e., p > 16for given interval values of R, S, and T? in figure 1.) Literature

reports other work which does not use this one-operand-at-a-time scheme and uses

polynomial time algorithms to do exact interval propagation [Davis, 1988].

However, these algorithms are limited to constraints of the form of unary

predicates, order relations, and linear equations. The focus of this paper is on

tmore complex equations like that in figure 1.

An approach to evaluate such expressions approximately has been taken by

researchers in interval computations [Alefeld and Herzberger, 1983]. They have

developed a method of evaluation based on mean value theorem that can evaluate

fix = [a b]) so that the evaluation error is at the most [b - a] 2. However, the average

case complexity of execution of this method is exponential with the number of

variables in an expression. Monte Carlo simulation is another approach that can

produce a subset of the result along with a probability distribution, but it is

computationally even more expensive for multi-variable functions. Sachs [1988]

describes a system that uses computationally less expensive methods such as one-

operand-at-a-time first before applying more expensive methods such as the

iterative approximation method.

In summary, previous work has used efficient one-operand-at-a-time scheme that

does not produce good approximations on typical engineering expressions and

iterative approximation methods that produce good approximation, but are

computationally expensive. (Section 6 gives concrete details of a Space Shuttle



application where we found previously reported methods not to meet its

requirements.)Thus,thesearenotefficient for processingmulti-variablemodels
like thatin figure 1in realtime.
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3. Terminology

In this section, we define real intervals and expressions based on the treatment by

Neumaier[1990]. An interval is a set of the form [a b] = Ix eR I a <= x <= b]. We

will use the convention that interval variables be represented by capital letters, and

real variables be represented by small letters.

Elementary operations {+, -, *,/, **} are defined on the set of intervals as A o B =

{ x o y I x e A and y e B } for all intervals A, B such that A o B is defined for all x e

A andyeB.

We extend any real function to interval arguments asf(A) = [fix) I x e A} for all

intervals A such thatflx) is defined for all x cA.

An algebraic arithmetic expression E is defined as below:

E = variable, real constant

E=EoE

E =fiE)

Real evaluation of expression f(X1,X2 .... Xn) is defined as {flvall, .. vali .. valn)

/vali belonging to Xi).

4.Intractability of algebraic interval expression evaluation

The problem for solving interval expressions exactly is known be NP-Hard for

algebraic expressions [Yemini, 1979], and undecidable for expressions with both

arithmetic operators and transcendental functions [Richardson, 1968]. The author

[Kulkarni, 1992] has shown that the problem for solving these with limited

approximation (problem P1) formulated in one of the forms below is also NP-Hard

for algebraic expressions.

Absolute Approximation: Given an expression E defined over X1, X2 .... Xn

with the interval values of vall, val2 .... val n, find an interval that approximates E

with error less than 5 = 2 cn, where c is a positive integer constant.

Relative Approximation: Given an expression E defined over X1, X2, Xn with



theintervalvaluesof vail, val2, Vain, find an interval that overestimates E = [a b] to

be a proper subset of [a- lal, b + Ibl], but a superset of [a b].

5. An Efficient Algorithm for Propagating Qualitative Values

Given the intractability of P1 for the class of algebraic expressions, it would be a

good strategy to identify classes of expressions that typically occur in applications

and for which there are efficient algorithms to propagate interval values. In this

section, we will identify one such class of expressions for which propagation can

be done exactly in linear time. Our philosphy is similar to that of Simmons (1986),

but our algorithm is applicable to a class of complex expressions which can be

defined precisely. First, we will describe certain properties of expressions that

simplify propagation, and then present the algorithm.

5.1 Properties that Simply Value Propagation

S
R-_-

P1. Monotonicity: Consider a functionfls r) - S + S 3 defined for positive S

and R on the interval S= [1 2] and R = [1 2]. For this function we have a

monotonic relation between f and the inputs R and S, i.e.,d--_R is always non-

negative and _SS always negative. Thus, we conclude that maximum value of f will

correspond to the maximum value of R and minimum value of S. Also, minimum

value of f will correspond to the minimum value of R and maximum value of S.

f(1 2)= 0.75

f(2 1)=-0.1

Therefore f is [-0.1 0.75] for R = [1 2] and S = [1 2]
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This property has been used in the BOUNDER program [Sachs, 1988], and is

described formally in the following lemma has been proved in [Neumaier, 1990].

Lemma: If f has arguments wl,..Wm, Xl,.. Xn, Yl,.. Yo Zl,.. Zp; withWi (i = 1,..

m) = (wil, wi2); Xi (i = 1.... n) = (xil, xi2); Yi (i = 1,.. o) = (Yil Yi2); and Zi (i =

1 P) = (Zil zi2) and df is zero, df belongs to [Oinf), df belongs to
.... dxi dyi dzi

(minf 0], then f(W 1 ,..Wm, X1,.. Xn, Y1,.. Yo Z1,.. Zp) = flW 1 ..Win, x11,.

Xml, Y11,. Yol, z12,.. Zp2) U flW1 ..Win, Xll .... Xml, Y12,.. Y02, z11, ..Zpl).
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P2. Simple Expressions: Some expressions that do not exhibit the monotonicity

property can be solved using their mathematical properties. Many functions (for

example, the trigonometric and the Bessel functions) decrease and increase

monotonically over a sequence of adjacent intervals. The points of separation of

these intervals are known. Extrema of the function can only occur at these points.

In some cases, one may use further knowledge about the function to simplify the

computation, e.g., the values of the function at the local maxima may be identical.

E.g., sin [0 201 = [-1 11

fix) = x2 - x, fl[O 31) = (-.25 6) based on local extrema.

P3. Substitution Principle: If a solvable subexpression, S, occurs in an

expression, and S is defined in terms of variables that do not occur in other parts of

the expression, then S can be replaced by a variable that has the evaluated value of

S. For example, f = sin(x) *z + sin 2 (x) with x = [0 20], z = [1 20] will reduce to:

f= s*z + s 2 with s = [-1 1], z = [I 20]. Nowfis monotonic w.r.t s, whereasfis

not monotonic w.r.t, x in the original expression, so we can use monotonicity

property to evaluate the latter expression. In general,

g(h(Xi...Xm), YI .. Yn ) can be evaluated by computing first S = h(X 1, ..

Xm) and then g(S, Y1 .. Yn). This rule allows us to decompose the evaluation for

f into two functions with smaller number of arguments.

P4. Singly Occuring Variables: If the interval variables in an expression occur

only once, then its real evaluation equals its one-operand-at-a-time

evaluation. [-Neumaler, 1990]

Computing an expression with unordered use of these properties can require time

exponential in the number of variables in the expression. The central contribution

of this paper is an algorithm that uses the above properties to evaluate expressions

in linear time.

5.2. Algorithm for value propagation

We will now present a linear-time algorithm for propagation of interval values

based on these properties.
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ALGORITHM A

Input: An Expression E

Interval values of variables in E.

Output: Resultant value of E

1. Replace a subexpression S by a variable Vs, if S is a solvable

subexpression 2 that is defined in terms of variables that do not occur

in other parts of the expression E. Solve S recursively using

algorithm A and assign the result to variable Vs.

2. Replace variables that occur only once by constants.

3. For variables that vary monotonically with E, substitute

appropriate extrema to calculate maxima and minima of the

expression.

4. If the overall expression is solvable by A, it would have been

transformed into a constant or a simple solvable expression 3 by steps

1 to 3. Solve this expression using a standard method.

8

The steps 1, 2, 3, and 4 are justified by properties P3, P4, P1, and P2 respectively.

I III I J I I Ill I I I Iil lllilOil I I I Illlil I Illlllll I I I i Illililil Ill I III I I I I lilliO! Jl !!1

R2-S }2. R2-S + T2 for S = [1 2], R= [2 8], and T= [1 2]
Evaluate { R2($3+S) R2($3+S)

R2"S } and T 2
1. Decide to evaluate { R2($3+S)

R2.S

Evaluate { R2($3+S) }

1. Not applicable

2. Not applicable

3. Maxima -- Expression (R=8, S=I) = 0.49219

Minima = Expression (R-- 2, S=2) = .05

Evaluate T 2

2For the clarity of description, we have omitted details about how solvability of a subexpression
or an expression is determined and these are described in the appendix.

3We define a simple solvable expression as any expression that can solved in number of steps that
is a linear function of number of variables e.g. a linear or a quadratic expression.



1.Not applicable

2. T 2 is [1 4]

Equation is transformed to v2 - v + [1 4] with v = [0.05 0.49219]

2. Not applicable

3. Not applicable

4. The solution is [.75 3.9525] based on evaluation of local extrema.
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Figure 3: Execution trace of Algorithm A on expression P

Now, we will examine how this algorithm computes the results of equation for P in

figure 1 for S = [1 2], R = [2 8], and T = [1 2]. Figure 2 shows the execution trace

of algorithm A on expression P. Step 1 will decide to execute the algorithm

R2-S and W = T 2. Next, V
recursively on the solvable subexpression V = R2($3+S)

does not have any solvable subexpression or singly occurring variables and so will

go to step 3. In step 3, the monotonic relation is used to compute maxima and

minima for the expression. V increases monotonically with R and decreases

monotonically with S. V will be maximum for R = 8 and S = 1; and minimum for R

= 2 and S = 2. This turns out to be [.05 0.49219] to be the values of V. In the

recursive call to evaluate W, step 2 is used to evaluate it to be [ 1 4]. Now the

algorithm to evaluate V 2 - V + W. Next, this becomes V 2 - V + [1 4]. Now the

algorithm evaluates V 2 - V using the fact that its only extrema is at .5. The result is

that expression has the value [-.25 -.0475]. Adding [1 4] to it gives the overall

result of [.75 3.9525].

Now we will prove that A is a linear time algorithm.

Lemma 1: Algorithm A can be executed in 16" c* (n-I) number of steps where n

is the number of occurrences of variables in an expression, and c is a constant such

that the number of steps needed execute the step 4 in the algorithm A <= c* n and c

>= 1 (Refer footnote 3).

Proof"

First, we will note that steps 2 and 3 in the algorithm A can be executed in less than

2n steps.

We will prove Lemma 1 by induction on the proposition that S(n) <= c* (n-l),

where S is the number of steps needed to execute algorithm A; n and c are as

defined above.



Initialization: S(2) <= 16"c.

Induction Argument:

Now we will show if the proposition is true forj < n, then it will also be valid forj

= n. Consider execution of an expression S(n) where n > 2.

if step 1 is used to solve S(n) then

let k be the number of occurrences of variables in the subexpression

S(n) = S(k) + S(n-k+l) for step 1

S(n) <= 16c * (k- 1) + 16 c * (n -k) <= 16 c*(n - 1)

otherwise

S(n) < = (4 + c) * n that is needed to execute steps 2 to 4.

<=16c*(n-1)asn> 2
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Thus, we have proved if the proposition is valid for j < n, then it will also be valid

forj = n,

6. Practical Utility of the algorithm:

We used the algorithm to develop a model-based diagnosis system for Space

Shuttle Reaction Control System that has qualitative models of some components

and quantitative models of others. Figure 4 shows the RCS pressurization system

model. A qualitative model related Helium Tank Pressure and Ullage Tank

Pressure. A set of quantitative equations relate Helium compressibility factor (zs),

volume of Helium system(vhs), weight of Helium system (whs), ullage volume

(vhu), density (rhof), and fuel (rwfd) to Helium and Ullage Tank Pressures. One

can compose an expression for rwfd in terms of ps 1, ps2, ts, pfl, pf2, and tf from

all the equations described in the model M. By using algorithm A on this

expression, one can compute an exact interval value for rwfd from interval values

of psl, ps2, pfl, pf2, ts, and tf using a few computations. This, in turn, can be

used to check if the system is working normally or not. We found that one-

operand-at-a-time and Quantity Lattice methods do not give acceptable

approximations. Our theoretical analysis is that iterative approximation method

would need 106 subroutine calls in the avarage case, as 6 variable intervals would

be divided into 10 intervals to achieve desired accuracy. This would not meet the

real-time requirements of the application. RCS example illustrates that Algorithm A

can propagate interval values through expressions encountered in some

applications. However, it may not be able to do so for expressions encountered in

some real-time applications. In these applications, one can approximate

expressions by ones belonging to the above-defined class off-line and then use

algorithm A to produce good approximations in real time. In contrast to previous



knownmethodsfor approximatesolutionssuchasMonteCarlosimulationor Mean
valuetheorembasedevaluation,thisapproachproducesa solutionin linear time in

real time satisfying the processing time requirement of many applications. In

contrast, in situations where computational time is not a concern, the Mean value

theorem based method can produce arbitrarily accurate solution, where running

algorithm A on an approximate functional fit would not.
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Qualitative

I
Helium Tank Pressure (ps)

Helium Tank Temperature(ts)

Ullage Tank Pressure (tf)

model

I
Ullage Tank Pressure (pf)

Usable fuel (rwfd)

I
Number of firing jets

Model M:

ps = (psl + ps2)/2
pf = (pfl + pf2)/2
zs = 1 + bl * ps * ts^(-bl)
vhs = vham * [1 + ps*a]^3 +vhli
whs = (ps*vhs) / (zs* R* ts)
pfv = e^ (dl - (d2/tf) + (d3*tf))
vhu = (g * [whi - whs] *tf *R) / (pf - pfv)
rhof = cl -c2*tf +c3*pf
rwfd = 100 * (rhof * [vp- vtp -vhu] -wtp)/wfda
bl, cl, c2, c3, dl, d2, d3, R, vhli, vham, a, vtp, vp, wtp, wfda, whi, pfv, g are constants

Figure 4: The model of Shuttle RCS pressurization system

7. Conclusion

This paper advances the state of art by producing a linear-time algorithm that can

propagate a qualitative value through a class of complex quantitative equations

exactly and through arbitrary algebraic expressions approximately. The algorithm

was found applicable to Space Shuttle Reaction Control System model. It will be

an important direction of future work to identify other classes of quantitative

equations for which polynomial time propagation algorithms exist.



8. Appendix

This appendix describes an algorithm for finding if an expression is solvable by
algorithm A.

Task: To check solvability of expression S at the height h given the list of all
solvable expressions at height <= h-1 (SOLVABLE-EXPRESSION LIST) and all
monotonic relations between subexpressions and variables.

Reprsentation: Expression S is represented as a tree with each operator as the
father of the operands. Some leaf variables may be identical symbols.

Symbols:
L: variable list

S: Given Expression

1. Make list L of variables that occur more than once in the expression S and
not monotonic with S.

2. Store any subexpression that satisfies the following two conditions in
SOLVABLE_SUBEXPRESSION LIST.

a. It occurs in SOLVABLE-EXPRESSION LIST

b. Variables occuring in this subexpression do not occur in the rest of the
expression S.

3. Repeat (3a) until L is empty
(3a) IF L is non-empty

THEN
Pick a variable V from L

Use algorithm C to find a subexpression SE-V that contains all the
occurances of variable V in S.

IF SE-V belongs to the SOLVABLE_SUBEXPRESSION LIST
THEN

Add a symbol denoting SE-V to the list L and redefine expression S in
terms of SE-V.

Eliminate all variables occuring in this expression LS from L.
ELSE

Remove the variable V from the list L.

4. Drop from expression S all variables that are monotonic with S.
If the new expression is of a type that is solvable directly, then add it to

SOLABLE-EXPRESSION LIST.

ale

Algorithm C:
1. Seti= 1

2. Find all the subexpressions of height i that contain variable V.
3. IF these are identical subexpressions or if there is only one such subexpression,

THEN return this subexpression as the answer
ELSE

set i = i+ 1 and go to step 2.

12

References

Alefeld, G. and Herzberger, J. (1983) Introduction to Interval Computations.



Academic Press, New York. 1 3

Davis, E. (1987) Constraint Propagation with Interval Labels. Artificial

Intelligence. 32:281-331.

Forbus, K. D. (1984) Qualitative Process theory. Artificial Intelligence 24:85-168.

Garey, M.R. and D.S. Johnson (1978) Computers and Intractability: A Guide to

Theory ofNP-completeness, H. Freeman. San Francisco.

de Kleer, J. and Brown, J. (1984) A qualitative physics based on confluences.

Artificial Intelligence 24: 7-83.

Kozen, D. and Yap, C.K. (1985) Algebraic cell decomposition in NC, in:

Proceedings of 26th Symposium on the Foundations of Computer Science. 515-

521.

Kuipers, B. J. (1984). Commonsense reasoning about causality: deriving behavior

from structure. Artificial Intelligence 24: 169-204.

Kuipers, B. J. (1986). Qualitative simulation. Artificial Intelligence. 29: 289-338.

Kuipers, B. J. and Berleant, D. (1980). A smooth integration of incomplete

quantitative knowledge into qualitative simulation. Tech Report A1 90-122. A1

Laboratory, University of Texas at Austin.

Kulkarni, D. (1992) Approximate Interval Expression Evaluation is NP-Hard,

Artificial Intelligence Research Branch, Forthcoming NASA Ames Technical

Report.

Neumaier, A. (1990) Interval methods for systems of equations. New York:

Cambridge University Press.

Richardson, D. (1968) Some undecidable problems involving elementary functions

of a real variable, J. Symbolic logic. 33: 514-520.

Robinson, P. (1992) A report on RCS diagnosis project. Forthcoming NASA

Ames Technical Report.



Sachs, E. (1987) Hierarchical Reasoning about inequalities, pp 649-654, AAAI-87:

Seattle, Washington.

Simmons, Reid (1986) Common-sense arithmetic reasoning, pp 118- 124. AAAl-

86, Philadelphia, PA.

Struss, Peter (1988) Mathematical Aspects of Qualitative Reasoning. in

International Journal of Al in Engineering.

Williams, Brian (1988) MINIMA: A symbolic approach to qualitative algebraic

reasoning In AAAI-88: Los Altos, CA. pp 264-269.

Yemini, Y. (1979) Some theoretical aspects of position-location problems, in

Proceedings 20th Symposium on the Foundations of Computer Science 1-7.

14



Academic Press, New York. 1 3

Davis, E. (1987) Constraint Propagation with Interval Labels. Artificial

Intelligence. 32:281-331.

Forbus, K. D. (1984) Qualitative Process theory. Artificial Intelligence 24:85-168.

Garey, M.R. and D.S. Johnson (1978) Computers and Intractabili_: A Guide to

Theo_ ofNP-completeness, H. Freeman. San Francisco.

de Kleer, J. and Brown, J. (1984) A qualitative physics based on confluences.

Artificial fiatelligence 24: 7-83.

Kozen, D. and Yap, C.K. (1985) Algebraic cell decomposition in NC, in:

Proceedings of 26th Symposium on the Foundations of Computer Science. 515-

521.

Kuipers, B. J. (1984). Commonsense reasoning about causality: deriving behavior

from structure. Artificial Intelligence 24: 169-204.

Kuipers, B. J. (1986). Qualitative simulation. Artificial Intelligence. 29: 289-338.

Kuipers, B. J. and Berleant, D. (1980). A smooth integration of incomplete

quantitative knowledge into qualitative simulation. Tech Report A1 90-122. AI

Laboratory, University of Texas at Austin.

Kulkarni, D. (1992) Approximate Interval Expression Evaluation is NP-Hard,

Artificial Intelligence Research Branch, Forthcoming NASA Ames Technical

Report.

Neumaier, A. (1990) Interval methods for systems of equations. New York:

Cambridge University Press.

Richardson, D. (1968) Some undecidable problems involving elementary functions

of a real variable, J. Symbolic logic. 33: 514-520.

Robinson, P. (1992) A report on RCS diagnosis project. Forthcoming NASA

Ames Technical Report.



Sachs, E. (1987) Hierarchical Reasoning about inequalities, pp 649-654, AAAI-87:

Seattle, Washington.

Simmons, Reid (1986) Common-sense arithmetic reasoning, pp 118- 124. AAAl-

86, Philadelphia, PA.

Struss, Peter (1988) Mathematical Aspects of Qualitative Reasoning. in

International Journal of Al in Engineering.

Williams, Brian (1988) MINIMA: A symbolic approach to qualitative algebraic

reasoning In AAAI-88: Los Altos, CA. pp 264-269.

Yemini, Y. (1979) Some theoretical aspects of position-location problems, in

Proceedings 20th Symposium on the Foundations of Computer Science 1-7.

14






